Padakesempatan kali ini membagikan jawaban dari soal Jarak antara titik K (2,-3) dan L (2,-8) adalahΓ’β¬βΉ Jawaban: 5 Satuan ke bawah Penjelasan dengan langkah-langkah: awalgambar koordinat kartesius, kedua buat titik K (2, -3) dan titik L (2, -8), lalu ukur jarak antara titik tersebut. siap jawabannya 5 satuan kebawah Demikian artikel tentang
Pada postingan ini kita membahas contoh soal jarak titik ke garis, jarak titik ke bidang dimensi tiga kubus dan limas yang disertai dengan penyelesaiannya atau seperti menyelesaikan soal sudut antara titik dengan garis dimensi tiga, untuk menentukan jarak titik ke garis atau jarak titik ke bidang dimensi tiga kita harus menggambarkan terlebih dahulu kubus atau limas. Dengan gambar tersebut, kita bisa menentukan jarak yang akan lebih jelasnya perhatikan contoh soal jarak titik ke garis dan bidang dimensi tiga dan penyelesaiannya dibawah soal 1 UNBK 2019 IPSDiketahui kubus dengan panjang rusuk 8β6 cm. Jarak titik A ke titik G adalahβ¦A. 16 cm B. 16 β 2 cm C. 24 cm D. 16β 3 cm E. 24β 2 soalUntuk menjawab soal ini kita gambarkan kubus sebagai berikutJarak titik A ke G ditunjukkan oleh garis warna merahBerdasarkan gambar diatas jarak titik A ke G ditunjukkan oleh garis warna merah. Untuk menghitung panjang garis AG kita hitung dahulu panjang garis AC dengan rumus phytagoras dibawah iniAC2 = AB2 + BC2AC2 = 8 β 6 2 + 8 β 6 2AC2 = 2 8 β 6 2Maka panjang garis AG kita hitung dengan rumus phytagoras juga yaituAG2 = AC2 + CG2AG2 = 2 8 β 6 2 + 8 β 6 = 3 8 β 6 2AG= AG = 8 β 6 . β 3 = 8 β 18 AG = 8 β 9 x 2 = 8 x 3 β 2 = 24 β 2 soal nomor 1 jawabannya soal 2 UNBK IPA 2019Kubus memiliki panjang rusuk 6 cm. Jika titik p terletak pada pertengahan rusuk HG, Q pada pertengahan rusuk HE, dan R pada pertengahan rusuk BC, jarak dari titik P ke garis QR adalahβ¦ β 6 cm B. 3 β 2 cm C. 3 β 6 cm D. 6 cm E. 9 soalKita buat kubus seperti yang digambarkan soal nomor 2 sebagai berikutJarak titik P ke garis QR ditunjukkan garis garis OPJarak titik P ke garis QR ditunjukkan oleh garis warna merah OP. Untuk menghitung OP kita tentukan terlebih dahulu panjang QP, QR dan panjang QPQP2 = 1/2 . 62 + 1/2 . 62QP2 = 32 + 32QP2 = = 3 β 2 cmMenentukan panjang QR = panjang HCQR2 = GH2 + CG2QR2 = 62 + 62 = 2 . = 6 β 2 Menentukan panjang PRPR2 = QR2β QP2PR2 = β 18PR2 = 72 β 18 = 54PR = 3β 6 Untuk menghitung panjang OP kita gunakan rumus luas segitiga PQR sebagai berikut1/2 QR . OP = 1/2 QP . PR6 β 2 . OP = 3 β 2 . 3 β 6 OP = 3/2 β 6 soal nomor 2 jawabannya soal 3 UNBK IPA 2019Diketahui kubus dengan panjang rusuk 8 cm. Jarak titik E ke bidang AFH adalah β¦A. 10/3 β 3 B. 8/3 β 3 C. 7/3 β 3 D. 5/3β 3 E. 4/3β 3 .Penyelesaian soalKita gambarkan kubus untuk mengetahui jarak titik E ke bidang AFH sebagai berikutED adalah jarak titik E ke bidang AFHPada gambar diatas jarak titik E ke bidang AFH ditunjukkan oleh garis merah EO. Untuk menghitung EO kita tentukan terlebih dahulu panjang EP, AP dan panjang EPEP = 1/2 EGEP = 1/2 . 8 β 2 cm = 4β 2 cmMenentukan panjang APAP2 = AE2 + EP2 = 82 + 4 β 2 2AP2 = 64 + 32 = 80AP = β 96 Menentukan panjang OPOP = 1/3 APOP = 1/3 . β 96 Dengan demikian kita bisa menghitung panjang EO dengan menggunakan rumus phytagoras segitiga EOPEO2 = EP2 β OP2EO2 = 42 β 1/3 β 96 = 16 β 1/9 . 96 = 16 β 32/3 = 16/3EO = β 16/3 EO = 4/3 β 3 cmJadi soal nomor 3 jawabannya soal 4 UN 2018 IPSDiketahui kubus dengan rusuk 12 cm. Jika titik T ditengah ruas garis PR, jarak dari titik O ke garis KT adalah..A. 2 β 3 cm B. 4β 3 cm C. 8β 3 cm D. 12β 3 cm E. 13β 6 soalUntuk menjawab soal ini kita gambarkan kubus seperti yang dijelaskan dalam adalah jarak titik A ke garis KTPada gambar diatas jarak titik O ke garis KT ditunjukkan garis warna merah AO. Untuk menghitung panjang AO, terlebih dahulu kita tentukan panjang OT dan panjang OTOT = 1/2 OQOT = 1/2 . 12β 2 cm = 6β 2 cmMenentukan panjang KTKT2 = KO2 + OT2KT2 = 122 + 6 β 2 2 = 144 + 72 = 216KT = β 216 = 6 β 6 Untuk menghitung panjang AO kita gunakan rumus luas segitiga KOT1/2 . KT . AO = 1/2 . OT . KO6 β 6 . AO = 6 β 2 . 12 β 6 AO = 12 β 2 AO = = 4 β 3 Jadi soal ini jawabannya soal 5 UN 2018 IPSDiketahui kubus dengan rusuk 6 cm. Titik P terletak ditengah diagonal sisi AC. Jarak titik C ke garis GP adalahβ¦A. 4 β 3 cm B. 4β 2 cm C. 3β 3 cm D. 3β 2 cm E. 2β 3 soalOC adalah jarak titik C ke garis GPBerdasarkan gambar diatas, garis OC adalah jarak titik C ke garis GP. Untuk menentukan OC kita hitung dahulu panjang CP dan panjang CPCP = 1/2 ACCP = 1/2 6β 2 = 3 β 2 .Panjang GPGP2 = CP2 + CG2GP2 = 3 β 2 2 + 62 = 18 + 36 = 54GP = β 54 = 3 β 6 Untuk menentukan panjang OC kita gunakan rumus luas segitiga CGP1/2 CP . CG = 1/2 . GP . OC3 β 2 . 6 = 3 β 6 . OCOC = 2 β 3 EContoh soal 6 UN 2017 IPADiketahui limas beraturan Panjang rusuk tegak dan panjang rusuk alas 4 cm. Jarak titik A ke TB adalahβ¦A. 2 β 2 cm B. 2 β 3 cm C. 4 cm D. 4 β 2 cm E. 4 β 3 soalAP adalah jarak antara titik A dengan garis TBBerdasarkan gambar diatas jarak titik A ke garis TB ditunjukkan oleh garis warna merah AP. Untuk menghitung AP kita hitung terlebih dahulu luas segitiga sama sisi TAB dengan menggunakan rumus luas segitigaL = 1/2 . 4 . 4 sin 60Β°L = 8 . 1/2 . β 3 = 4 β 3 .Maka panjang AP sebagai berikutLuas segitiga TAB = 1/2 . alas . tinggiLuas segitiga TAB = 1/2 . TB. AP4 β 3 = 1/2 . 4 . APAP = 2 β 3 BContoh soal 7 UN 2017 IPADiketahui limas segiempat beraturan dengan AB = BC = 5 β 2 cm dan TA = 13 cm. Jarak titik A ke garis TC adalahβ¦A. 4 83 cm B. 4 1213 cm C. 9 313 cm D. 10 cm E. 12 cmPenyelesaian soalAP adalah jarak titik ke garis TC limasAP adalah jarak titik A ke garis TC. Untuk menghitung AP tentukan dahulu panjang AC dan panjang ACAC2 = AB2 + BC2AC2 = 5 β 2 2 + 5 β 2 = 50 + 50 = 100AC = 10 cmMenghitung panjang TOTO2 = TA2 β 1/2 AC2TO2 = 132 β 52 = 144TO = 12 cmUntuk menghitung panjang AP kita gunakan rumus luas segitiga ACT1/2 . AC . TO = 1/2 . TC . AP10 . 12 = 13 . APAP = 120 / 13 = 9 3/13 soal nomor 7 jawabannya adalah C
Jaraktitik K (1, -3) dan L (1,7) adalah. plus caranya ayo bantuin aku Iklan Jawaban 5.0 /5 6 korosensei55 Penjelasan dengan langkah-langkah: Dik X2= 1 X1= 1 Y2=7 Y1=-3 Dijawab (X2 - X1 , Y2 - Y1) = (1 - 1, 7- (-3) = (0,10) Sedang mencari solusi jawaban Matematika beserta langkah-langkahnya? Pilih kelas untuk menemukan buku sekolah Kelas 4Jaraktitik k (1,-3) dan l(1,5) adalah. Question from @Dinisuwanti02 - Sekolah Menengah Atas - Matematika. Jarak = β((5 - (-3))Β² + (1 - 1)Β²) Jarak = β(64 + 0) Jarak = 8 satuan . 2 votes Thanks 0. More Questions From This User See All. Dinisuwanti02 May 2019 | 0 Replies .41 Menentukan jarak dalam ruang (antar titik, titik ke garis atau titik ke bidang). Mampu mennetukan jarak antara dua titik Mampu menentukan jarak titik ke garis Mampu menentukan jarak titik ke bidang Mampu menyelesaikan masalah kontekstual yang berkaitan jarak antara dua titik, titik ke garis atau titik ke bidang pada ruang. B. Tujuan
Jarakdalam ruang (antar titik,. Jarak Titik K 1 3 Dan L 1 7 Adalah. Datar (pembahasan modul kelas 12), matematika umum bagian 1. Jarak dalam ruang (antar titik,. Soal tentang jarak dalam ruang.terimakasih sudah menonton. Dimensi tiga jarak titik ke titik dan garis. Jawaban paling sesuai dengan pertanyaan hitunglah jarak titik k(2,4) dan titik.
Teksvideo. jadi dari soal diketahui titik k = 1 - 3 ini kita anggap x1 dan y1 lalu titik L = 1,7 ini kita anggap X2 dan Y2 rumus jarak titik k dan l adalah KL = akar dari X 2 min x 1 kuadrat + Y 2 min y 1 kuadrat jadi nggak kita masukkan saja Berarti akar dari 1 min 1 kuadrat + 73 kuadrat Kenapa + 3 karena min min 3 hasilnya jadi Lalu = akar
. 120236045621320263192